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Abstract
Using higher order intertwining operators we obtain new exactly solvable
potentials admitting quasinormal mode (QNMs) solutions of the Klein–Gordon
equation. It is also shown that different potentials exhibiting QNMs can be
related through nonlinear supersymmetry.

PACS number: 03.65.Ge

1. Introduction

Quasinormal modes (QNMs) are basically discrete complex frequency solutions of real
potentials. They appear in the study of black holes and in recent years they have been
widely studied [1]. Interestingly, QNMs have also been found in nonrelativistic systems
[2]. However, as in the case of bound states or normal modes (NMs) there are not many
exactly solvable potentials admitting QNM solutions and often QNM frequencies have to be
determined numerically or other approximating techniques such as the WKB method, phase
integral method, etc. Consequently, it is of interest to obtain new exactly solvable potentials
admitting such solutions.

In the case of NMs or scattering problems, a number of methods based on intertwining
technique, e.g., Darboux algorithm [3], supersymmetric quantum mechanics (SUSYQM) [4],
etc, have been used successfully to construct new solvable potentials. Usually, the intertwining
operators are constructed using first-order differential operators. However, in recent years
intertwining operators have been generalized to higher orders [5–9] and this has opened up
new possibilities to construct a whole new class of potentials having nonlinear symmetry. In
particular, use of higher order intertwining operator or higher order Darboux algorithm leads
to nonlinear supersymmetry.

QNMs are associated with outgoing wave-like behaviour at spatial infinity and unlike
normal modes (NMs) the QNM wavefunctions have rather unusual characteristic (for example,
wavefunctions diverging at both or one infinity) [10]. Such open systems have been studied
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using (first-order) intertwining technique [11]. Recently it has also been shown that the open
systems can be described within the framework of first-order SUSY [10]. Here, our objective
is to examine whether or not intertwining method based on higher order differential operators
can be applied to open systems. For the sake of simplicity, we shall confine ourselves to
second-order intertwining operators (second-order Darboux formalism) and it will be shown
that the second-order Darboux algorithm can indeed be applied to models admitting QNMs
although not exactly in the same way as in the case of NMs. In particular, we shall use
the second-order intertwining operator to the Pöschl–Teller potential to construct several new
potentials admitting QNM solutions. It will also be shown that such potentials may be related
to the Pöschl–Teller potential by second-order SUSY. The paper is organized as follows:
in section 2, we present the construction of new potentials using second-order intertwining
operators; in section 3, nonlinear SUSY underlying the potentials is shown and finally section 4
is devoted to a conclusion.

2. Second-order intertwining approach to quasinormal modes

Two Hamiltonians H0 and H1 are said to be intertwined by an operator L if

LH0 = H1L. (1)

Clearly, if ψ is an eigenfunction H0 with eigenvalue E, then Lψ is an eigenfunction of H1 with
the same eigenvalue provided Lψ satisfies required boundary conditions. If L is constructed
using first-order differential operators, then intertwining method is equivalent to Darboux
formalism or SUSYQM. In particular, if V0 is the starting potential and L = d

dx
+ W(x), then

the isospectral potential is V1 = V0 + 2 dW
dx

[4]. Similarly, if L is generalized to higher orders,
then it is equivalent to higher order Darboux algorithm or higher order SUSY.

Let us now consider L to be a second-order differential operator of the form [7]

L = d2

dx2
+ β(x)

d

dx
+ γ (β),

β(x) = − d

dx
logWi,j (x), (2)

γ (β) = −β ′′

2β
+

(
β ′

2β

)2

+
β ′

2
+

β2

4
−

(
ω2

i − ω2
j

2β

)2

,

where ψi and ψj are the eigenfunctions of H0 corresponding to the eigenvalues ω2
i and ω2

j

and Wi,j = (ψiψ
′
j − ψ ′

iψj ) is the corresponding Wronskian. Then, the isospectral partner
potential V2(x) obtained via second-order Darboux formalism is given by

V2(x) = V0(x) − 2
d2

dx2
log Wi,j (x). (3)

The wavefunctions ψi(x) and φi(x) corresponding to V0(x) and V2(x) are connected by

φk(x) = Lψk(x) = 1

Wi,j (x)

∣∣∣∣∣∣
ψi ψj ψk

ψ ′
i ψ ′

j ψ ′
k

ψ ′′
i ψ ′′

j ψ ′′
k

∣∣∣∣∣∣ , i, j �= k. (4)

The eigenfunctions obtained from ψi and ψj are given by

f (x) ∝ ψi(x)

Wi,j (x)
, g(x) ∝ ψj(x)

Wi,j (x)
. (5)
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It may be noted that in the case of normal modes, the new potential would be free of
any new singularities if the Wronskian Wi,j (x) is nodeless. This in turn requires that the
Wronskian be constructed with the help of consecutive eigenfunctions (i.e., j = i + 1).
Also, the eigenfunctions f (x), g(x) in (5) are not acceptable because they do not satisfy the
boundary conditions for the normal modes and in any case they are not SUSY partners of the
corresponding states in the original potential. Thus, in the case of normal modes the spectrum
of the new potential is exactly the same as the starting potential except for the levels used in
the construction of the Wronskian. However, we shall find later that not all of these results
always hold in the case of QNMs.

Let us now consider one-dimensional Klein–Gordon equation of the form [10][
∂2
t − ∂2

x + V (x)
]
ψ(x, t) = 0. (6)

The corresponding eigenvalue equation reads

Hψn = ω2
nψn(x), H = − d2

dx2
+ V (x). (7)

The QNM solutions of equation (7) are characterized by the fact that they are either (1)
increasing at both ends II or (2) increasing at one end and decreasing at the other (ID, DI). The
wavefunctions decreasing at both ends (DD) correspond to bound states or NMs. In the case
of QNMs, the eigenvalues

(
ω2

n

)
may be complex or real and negative. If Re(ωn) �= 0, then

the SUSY formalsim cannot be applied since in that case the superpotential W(x) becomes
complex and consequently one of the partner potential becomes complex. So, we shall confine
ourselves to the case when Re(ωn) = 0, i.e., ω2

n are real and negative. We would also like to
mention that in case equation (7) is to be interpreted as a Schrödinger equation one just has to
consider the replacement ω2

n → En.
There are a number of potentials which exhibit QNMs. A potential in this category is the

inverted Pöschl–Teller potential. This potential is used as a good approximation in the study
of Schwarzschild black hole and it is given by

V0(x) = ν sech2x. (8)

Equation (7) for the potential (8) can be solved in different ways. One of the simplest way is
to apply the shape invariance criteria [4] and the solutions are found to be [12–14]

ω±
n = −i(n − A±), A± = −1

2
±

√
1

4
− ν = −1

2
± q (9)

ψ±
n (x) = (sech x)(A

±−n)
2F1

(
1

2
+ q − iω±

n ,
1

2
− q − iω±

n , 1 − iω±
n ,

1 + tanh x

2

)
. (10)

We note that the behaviour of the wavefunctions (10), i.e., whether they represent a NM or
QNM depends on the value of the parameter ν. For ν ∈ (0, 1/4), i.e., A+ ∈ (−1/2, 0), A− ∈
(−1,−1/2), the wavefunctions represent outgoing waves and are of the type II. For ν < 0
(i.e., A+ > 0, A− < 0) then the wavefunctions represent NMs when n < A+ while for n > A+

they are QNMs. On the other hand, the wavefunctions are always QNMs corresponding to
ω−

n . It may be noted that for the QNMs the wavefunctions (10) for even n are nodeless while
those for odd n have exactly one node at the origin. This behaviour of the wavefunctions is
quite different from those occuring in the case of NMs. Using the procedure mentioned above
we shall now construct new exactly solvable potentials admitting QNM solutions.
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2.1. Construction of isospectral partner potential using NMs

Case 1: V0 with two NMs. In order to apply the second-order intertwining approach one may
start with a potential V0(x) admitting (1) at least two NMs and the rest QNMs or (2) only
QNMs. We begin with the first possibility. Thus, we consider ν = −5.04 so that there are
two NMs. In this case, we obtain from (9) A± = 1.8,−2.8. Thus, the NMs correspond to
ω+

0 = 1.8i, ω+
1 = 0.8i and are given by

ψ+
0 (x) = (sech x)A

+
, ψ+

1 (x) = (sech x)(A
+−1)

2F1

(
2A+,−1, A+,

1 + tanh x

2

)
. (11)

The QNMs in this case correspond to the frequencies ω+
n, n = 2, 3, . . . and are given by

ψ+
n (x). Also for ω−

n , n = 0, 1, 2, . . . , there is another set of QNMs and the corresponding
wavefunctions are given by ψ−

n (x). In this case A− < 0 and consequently there is no NM.
Let us construct a potential isospectral to (8) using the NM frequencies ω+

0 and ω+
1 . Then,

from (10) the Wronskian W +
0,1 is found to be

W +
0,1 = −(sech x)2A+−1. (12)

Clearly, W +
0,1 does not have a zero. In this case, the new potential V +

2 (x) is free of singularities
and is given by

V +
2 (x) = V0(x) − 2

d2

dx2
log W +

0,1(x) = −(1 − A+)(2 − A+) sech2x. (13)

Using the value of A+ it is easy to see that the new potential V +
2 (x) in (13) does not support

any bound state but only QNMs. This is also reflected by the explicit expressions for the
wavefunctions. Using (5) we find

f +(x) = (sech x)(1−A+), g+(x) = −(sech x)−A+
tanh x. (14)

From (14) it follows that the above wavefunctions are QNMs corresponding to −ω+
1 and −ω+

0 ,
respectively. Note that these two QNMs are new and were not present in the original potential.
This, in fact, is where the behaviour of the new potential is different from the usual case. In
the case of potentials supporting only NMs, the wavefunctions f +(x), g+(x) obtained through
(5) do not have acceptable behaviour. However in the present case both these wavefunctions
become QNMs instead of NMs and they have acceptable behaviour at ±∞ as can be seen from
(14) as well as from figure 1. The other wavefunctions φ+

n(x), n = 2, 3, . . ., corresponding to
QNM frequencies ω+

n = −i(n − A+) can be obtained using (4) and are given by

φ+
n (x) = (sech x)(A

+−n)[(n − 1)nFn tanh2x

+ c1(2n − 3)Fn+1 sech2x tanh x + c1c2Fn+2 sech4x], n = 2, 3, . . . ,

(15)

where

c1 = −n(2A+ − n + 1)

2(A+ − n + 1)
, c2 = (−n + 1)(2A+ − n + 2)

2(A+ − n + 2)

Fn = 2F1

(
−n, 2A+ − n + 1, A+ − n + 1,

1 + tanh x

2

)
(16)

Fn+1 = 2F1

(
−n + 1, 2A+ − n + 2, A+ − n + 2,

1 + tanh x

2

)

Fn+2 = 2F1

(
−n + 2, 2A+ − n + 3, A+ − n + 3,

1 + tanh x

2

)
.
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f+

g+

φ2
+

φ3
+

x  

Wavefunction

Figure 1. Graph of f +(x), g+(x), φ+
2 (x) and φ+

3 (x) for A+ = 1.8.

To see the nature of the wavefunctions (15) we have plotted φ+
2 (x) and φ+

3 (x) in figure 1.
From the figure it can be seen that these wavefunctions are indeed QNMs and for even n they
do not have nodes while for odd n they have one node at the origin. We would like to point out
that the new potential V +

2 (x) has two more QNMs than V0(x). Thus, except for two additional
QNMs, the QNM frequencies ω+

n are common to both V0(x) and V +
2 (x). We now examine the

second set of solutions corresponding to ω−
n . It can be shown by the direct calculation that the

new potential (13) also possesses this set of solutions.

Case 2: V0(x) with three NMs. Let us now consider the potential (8) supporting three NMs.
A convenient choice of the parameter is ν = −6.2, so that A+ = 2.04, A− = −3.04. We shall
now construct the new potential using the NM frequencies ω+

1 = 1.04i and ω+
2 = 0.04i. The

Wronskian W +
1,2 is found to be

W +
1,2(x) = (sech x)2A+−1

2(A+ − 1)
[A+ − 2 − (A+ − 1) cosh 2x]. (17)

Now using (3) we obtain

V +
2 (x) = −(A+ − 1)(A+ − 2) sech2x + 8(A+ − 1)

(A+ − 2) cosh 2x − (A+ − 1)

[(A+ − 1) cosh 2x − (A+ − 2)]2
. (18)

To get an idea of the potential, we have plotted V +
2 (x) in figure 2. From figure 2, it is clear that

V +
2 (x) supports at least one NM. Next to examine the wavefunctions we first consider f +(x)

and g+(x). From relation (5), we obtain

f +(x) = 2(A+ − 1)(sech x)−A+
tanh x

(A+ − 1) cosh 2x − (A+ − 2)
,

(19)

g+(x) = (sech x)−(A++1)[1 − (2A+ − 1) tanh2x]

(A+ − 1) cosh 2x − (A+ − 2)
.

Also, from (4) it follows that

φ+
0 (x) = 4(A+ − 1)(sech x)(A

+−2)

(A+ − 1) cosh 2x + A+ − 2
. (20)



5870 T Jana and P Roy

V2
+ (x)

Figure 2. Graph of V +
2 (x) for A+ = 2.04.

 f +

 g+

φ3
+

φ0
+

Wavefunction 

x

Figure 3. Graph of f +(x), g+(x), φ+
0 (x) and φ+

3 (x) for A+ = 2.04.

From (19) it follows that f +(x) and g+(x) are new QNMs corresponding to frequencies
−ω+

2 = −0.04i and −ω+
1 = −1.04i, respectively. The former has one node and the later has

two nodes. The nodal structure of the QNM wavefunctions are different from those obtained
earlier. The reason for this is that since we started with the first and second excited state NMs
and the Wronskian W +

1,2 is nodeless, the behaviour of the original wavefunctions ψ+
1,2(x) is

retained by f +(x) and g+(x). However, φ+
0 (x) is a NM at ω+

0 = 2.04i and it does not have a
node because ψ+

0 (x) does not have one. Also other QNM wavefunctions φ+
n (x), n = 3, 4, . . .

have either no node or one node. In figure 3, we have plotted some of the wavefunctions. We
also note that although the potential in (13) is of a similar nature as (8), the potential (18) is
of a completely different type. In particular, it is a non-shape-invariant potential. Finally we
discuss the possibility of a second set of solutions for the potential (18). We recall that the
existence of two sets of solutions for the potential (8) (or (13)) was due to the fact that the
parameter ν could be expressed as a product of two different parameters A±. However, in
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x

 f+

  g+

  φ2
+

φ3
+

Wavefunction 

Figure 4. Graph of f +(x), g+(x), φ+
2 (x) and φ+

3 (x) for A+ = −0.4.

the case of (18) the entire potential cannot be expressed in terms of two distinct parameters
because of the presence of the second term. Consequently, the potential (18) has only one set
of solution mentioned above.

2.2. Construction of isospectral partner potential using QNMs

Case 1: Potential based on consecutive QNMs. Here, we shall construct isospectral partner
of a potential which has only QNMs. Thus, we consider ν = 0.24 and in this case
A± = −0.4,−0.6. We consider the A+ sector and begin with the frequencies ω+

0 and ω+
1 .

In this case, the expression for the Wronskian W +
0,1, the new potential V +

2 (x) and the QNM
wavefunctions can be derived from expressions (12), (13) and (15). respectively, except that
we now have to use a different parameter value. Thus, the new potential is given by

V +
2 (x) = −3.36 sech2x. (21)

For this potential, the NMs corresponding to −ω+
0 = 0.4i and −ω+

1 = 1.4i are given,
respectively, by

f + = (sech x)1.4, g+ = (sech x)0.4 tanh x. (22)

Clearly, these NMs are not SUSY partner of any levels in H0. The QNMs correspond to
ω+

n = −i(n + 0.4), n = 2, 3, . . . , and are given by (15) with A+ = −0.4. We have plotted
some of the wavefunctions in figure 4. From the figure, we find that the wavefunctions f +(x)

and g+(x) correspond to NMs and the other wavefunctions represent QNMs which are the
SUSY partners of the QNMs in H0. We note that as in (13) the potential (21) has two sets of
QNMs, the second of which corresponds to ω−

n .

Case 2: Potential based on non-consecutive QNMs. Here we shall consider the previous
parameter values (i.e., A+ = −0.4) and construct the new potential using the non-consecutive
levels ω+

0 and ω+
3 . In this case, the Wronskian is given by

W +
0,3 = (sech x)(2A+−3)

2(A+ − 2)
[(9 − 6A+) tanh2x + 3]. (23)
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x
V2

+ (x)

Figure 5. Graph of V +
2 (x) for A+ = −0.4.

It can be shown that the Wronskian (23) is nodeless. Now, using (3) the new potential is found
to be

V +
2 (x)

= (A+−2)[2(A+(A+−2)(3A+−7)−2A+(A+−1)(A+−4) cosh 2x−(3−2A+)2(A+−1) sech2x]

[1−A++(A+−2) cosh 2x]2
.

(24)

The potential (24) is free of any singularity and is plotted in figure 5. From figure 5 we find
that it supports NMs. As explained earlier, this potential also has one set of solution. We now
consider the wavefunctions corresponding to ψ+

0 (x) and ψ+
3 (x). These are obtained from (5)

and are given by

f +(x) = 2(A+ − 2)

(9 − 6A+) tanh2x + 3
(sech x)(3−A+),

(25)

g+(x) = (1 − 2A+) tanh2x + 3

(9 − 6A+) tanh2x + 3
sinh x(sech x)(1−A+).

The above wavefunctions (with zero and one node respectively) represent NMs corresponding
to −ω+

3 = 3.4i and −ω+
0 = 0.4i. The other wavefunctions can be obtained through (4). The

two QNM wavefunctions lying between ω+
0 and ω+

3 are φ+
1,2(x) corresponding to ω+

1 = −1.4i
and ω+

2 = −2.4i. We have plotted these wavefunctions in figure 6. From figure 6, it can be seen
that f +(x) and g+(x) are NMs, while φ+

1,2(x) are QNMs with the later having two nodes. The
rest of the QNM wavefunctions corresponding to the frequencies ω+

n = −(n + 0.4) i, n �= 0, 3,
are given by φ+

n(x) and they have either zero or one node.

3. Polynomial SUSY

In first-order SUSY, the anticommutator {Q,Q†} of the supercharges is a linear function of
the Hamiltonian. On the other hand, in higher order SUSY, {Q,Q†} is a nonlinear function
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x

Wavefunction 

f +

g+

φ1
+

  φ2
+

Figure 6. Graph of f +(x), g+(x), φ+
1 (x) and φ+

2 (x) for A+ = −0.4.

of the Hamiltonian. It will be shown here that the Hamiltonians H0 and H2 are related by
second-order SUSY. To this end, we define the supercharges Q and Q† as follows:

Q =
(

0 0
L 0

)
, Q† =

(
0 L†

0 0

)
, (26)

where the operator L is given by (2).
Clearly, the supercharges Q and Q† are nilpotent. We now define a super Hamiltonian H

of the form

H =
(

H0 0
0 H2

)
. (27)

It can be easily verified that Q,Q† and H satisfy the following relations:

[Q,H ] = [Q†,H ] = 0. (28)

Then, the anticommutator of the supercharges Q and Q† is given by a second-order polynomial
in H:

Hss = {Q,Q†} =
(

L†L 0
0 LL†

)
=

(
H +

δ

2

)2

− cI, (29)

where I is the 2 × 2 unit matrix and

δ = −(
ω2

i + ω2
j

)
, c =

(
ω2

i − ω2
j

2

)2

. (30)

Also, we have

[Q,Hss] = [Q†,Hss] = 0. (31)

Relations (29) and (31) constitute second-order SUSY algebra.
As an example, let us consider the potentials (8) and (13). The corresponding

Hamiltonians H0 and H2 are obtained from (7). In this case δ = 0.5416 and c = 0.2916, so
that from (29) we get

Hss = (H + 0.5416)2 − 0.2916I. (32)

In a similar fashion one may obtain Hss for the other pair of potentials.
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4. Conclusion

Here, we applied the second-order Darboux algorithm to the Pöschl–Teller potential and
obtained new exactly solvable potentials admitting QNM solutions. We have considered a
number of possibilities to construct the new potentials e.g., starting from NMs or starting
from QNMs. It has also been shown that the new potentials are related to the original one by
second-order SUSY. We feel, it would also be useful to analyse the construction of potentials
using various levels as well as for different values of the parameter ν (for example, ν =
half-integer) [10]. Finally, we believe it would be interesting to extend the present approach
to other effective potentials appearing in the study of Reissner–Nordström, Kerr black hole,
etc.
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